Domain dsjc.de kaufen?

Produkt zum Begriff Datenanalyse:


  • Datenanalyse mit Python (McKinney, Wes)
    Datenanalyse mit Python (McKinney, Wes)

    Datenanalyse mit Python , Die erste Adresse für die Analyse von Daten mit Python Das Standardwerk in der 3. Auflage, aktualisiert auf Python 3.10 und pandas 1.4 Versorgt Sie mit allen praktischen Details und mit wertvollem Insiderwissen, um Datenanalysen mit Python erfolgreich durchzuführen Mit Jupyter-Notebooks für alle Codebeispiele aus jedem Kapitel Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.10 und pandas 1.4, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy und Jupyter kennen. Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und Zusatzmaterial zum Buch sind auf GitHub verfügbar. Aus dem Inhalt: Nutzen Sie Jupyter Notebook und die IPython-Shell für das explorative Computing Lernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennen Setzen Sie die Datenanalyse-Tools der pandas-Bibliothek ein Verwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von Daten Erstellen Sie interformative Visualisierungen mit matplotlib Wenden Sie die GroupBy-Mechanismen von pandas an, um Datensätze zurechtzuschneiden, umzugestalten und zusammenzufassen Analysieren und manipulieren Sie verschiedenste Zeitreihendaten Erproben Sie die konkrete Anwendung der im Buch vorgestellten Werkzeuge anhand verschiedener realer Datensätze , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 3. Auflage, Erscheinungsjahr: 20230302, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: McKinney, Wes, Übersetzung: Lichtenberg, Kathrin~Demmig, Thomas, Auflage: 23003, Auflage/Ausgabe: 3. Auflage, Seitenzahl/Blattzahl: 556, Keyword: Big Data; Data Mining; Data Science; IPython; Jupyter; Jupyter notebook; NumPy; Python 3.10; matplotlib; pandas 1.4, Fachschema: Data Mining (EDV)~Analyse / Datenanalyse~Datenanalyse~Datenverarbeitung / Simulation~Informatik~Informationsverarbeitung (EDV)~Internet / Programmierung~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Warengruppe: HC/Programmiersprachen, Fachkategorie: Data Mining, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 241, Breite: 168, Höhe: 35, Gewicht: 999, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger: 2660049, Vorgänger EAN: 9783960090809 9783960090007 9783864903038 9783958750739, andere Sprache: 9781491957660, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0120, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 44.90 € | Versand*: 0 €
  • Datenanalyse mit R: Fortgeschrittene Verfahren (Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter)
    Datenanalyse mit R: Fortgeschrittene Verfahren (Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter)

    Datenanalyse mit R: Fortgeschrittene Verfahren , Dieses Buch erklärt ausgewählte Techniken der fortgeschrittenen Datenanalyse. In 10 eigenständigen Kapiteln werden dazu einführende und komplexe Datenbeispiele in R analysiert und interpretiert. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20220701, Produktform: Kartoniert, Titel der Reihe: Pearson Studium - Psychologie##, Autoren: Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter, Seitenzahl/Blattzahl: 304, Themenüberschrift: COMPUTERS / Mathematical & Statistical Software, Keyword: Datenanalyse Fortgeschrittene; Diagnostik; Methodik; R Programm; Statistik, Fachschema: Analyse / Datenanalyse~Datenanalyse~Psychologie / Forschung, Experimente, Methoden~Erforschung~Forschung~Datenverarbeitung / Anwendungen / Mathematik, Statistik, Fachkategorie: Psychologie~Wahrscheinlichkeitsrechnung und Statistik~Mathematische und statistische Software, Warengruppe: HC/Psychologie/Psychologische Ratgeber, Fachkategorie: Forschungsmethoden, allgemein, Thema: Verstehen, Text Sprache: ger, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Pearson Studium, Verlag: Pearson Studium, Verlag: Pearson Studium, Länge: 241, Breite: 173, Höhe: 17, Gewicht: 525, Produktform: Kartoniert, Genre: Geisteswissenschaften/Kunst/Musik, Genre: Geisteswissenschaften/Kunst/Musik, Herkunftsland: NIEDERLANDE (NL), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0004, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 2781061

    Preis: 34.95 € | Versand*: 0 €
  • Steinberg Systems Schichtdickenmessgerät - 0 - 2000 μm - ±3 % + 1 μm - Datenanalyse SBS-TG-3000
    Steinberg Systems Schichtdickenmessgerät - 0 - 2000 μm - ±3 % + 1 μm - Datenanalyse SBS-TG-3000

    In Sekundenschnelle Lackschichten messen – mit dem Schichtdickenmessgerät von Steinberg Systems kein Problem! Das hochsensible Gerät ermittelt automatisch, wie stark verschiedene Schichten, wie etwa Farbe oder Kunststoffe, auf ferromagnetischen Metallen sind. Die vielen Funktionen und exakten Messergebnisse machen das Gerät zum Muss in jeder Autowerkstatt. Umfangreicher geht’s kaum: Das Lackmessgerät bietet neben verstellbarer Display-Helligkeit und Alarm-Lautstärke viele Funktionen: automatisch rotierende Anzeige und Abschaltung, Analysesoftware mit verschiedenen Darstellungen der Messwerte, verschiedene Modi sowie die Batterie-Warnanzeige. Die gemessenen Werte übertragen Sie per Bluetooth bequem auf den Rechner. Dank spezieller App behalten Sie den Überblick über die Daten. Der Lacktester verfügt zudem über eine integrierte, hochempfindliche Sonde. Diese misst auf ±3 % + 1 μm genau. Vor der Messung justieren Sie das Gerät schnell und einfach mittels Nullpunkt- oder Mehrpunktkalibrierung. Dazu verwenden Sie im besten Fall eine unbeschichtete Probe des Substrates, das Sie messen möchten. Alternativ eignet sich auch eine glatte Nullplatte. Mit dem Lackdicken-Messer prüfen Sie die Dicke nichtmagnetischer Schichten auf verschiedenen Oberflächen, beispielsweise auf Edelstahl, Eisen, Aluminium oder Kupfer. Dazu nutzt das Gerät die Wirbelstromprüfung. Diese ermöglicht Ihnen die zerstörungsfreie Messung mit einem hohen Messbereich von 0 - 2000 μm. Die Ergebnisse lesen Sie bequem auf dem klaren LCD ab.

    Preis: 109.00 € | Versand*: 0.00 €
  • Arduino Tiny Machine Learning Kit
    Arduino Tiny Machine Learning Kit

    Arduino Tiny Machine Learning Kit

    Preis: 59.50 € | Versand*: 4.95 €
  • Was sind die potenziellen Anwendungen von Zufallsalgorithmen in der Datenanalyse und Machine Learning?

    Zufallsalgorithmen können verwendet werden, um Daten zu generieren, zu transformieren oder zu erweitern, was die Trainingsdaten für Machine Learning verbessern kann. Sie können auch zur Erzeugung von Unsicherheitsschätzungen in Vorhersagemodellen verwendet werden. Darüber hinaus können Zufallsalgorithmen in der Optimierung von Modellparametern eingesetzt werden, um bessere Ergebnisse zu erzielen.

  • Was sind die Grundprinzipien der Datenanalyse in der Statistik?

    Die Grundprinzipien der Datenanalyse in der Statistik sind Datenerfassung, Datenbereinigung und Dateninterpretation. Durch die systematische Erfassung von Daten, die Bereinigung von Fehlern und Ausreißern sowie die Interpretation der Ergebnisse können statistische Muster und Zusammenhänge entdeckt werden. Diese Prinzipien bilden die Grundlage für fundierte statistische Analysen und Entscheidungen.

  • Wie können Spreadsheets effektiv zur Datenanalyse und -visualisierung eingesetzt werden?

    Spreadsheets können zur Datenanalyse verwendet werden, indem Daten sortiert, gefiltert und analysiert werden. Durch die Verwendung von Formeln und Funktionen können komplexe Berechnungen durchgeführt werden. Zudem können Diagramme und Grafiken erstellt werden, um die Daten visuell darzustellen.

  • Welche Statistiksoftware würden Sie empfehlen, um Datenanalyse und Visualisierung durchzuführen?

    Ich würde R empfehlen, da es kostenlos, leistungsstark und flexibel ist. Es bietet eine Vielzahl von Paketen für Datenanalyse und Visualisierung. Zudem hat es eine große und aktive Community für Unterstützung und Ressourcen.

Ähnliche Suchbegriffe für Datenanalyse:


  • Zeigermann, Oliver: Machine Learning - kurz & gut
    Zeigermann, Oliver: Machine Learning - kurz & gut

    Machine Learning - kurz & gut , Der kompakte Schnelleinstieg in Machine Learning und Deep Learning Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps Anhand konkreter Datensätze lernen Sie einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler*innen Machine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden alle wesentlichen Themen abgedeckt und mit praktischen Beispielen in Python illustriert. Verwendet werden dabei die Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs haben Sie einen Überblick über das gesamte Thema und können Ansätze einordnen und bewerten. Das Buch vermittelt Ihnen eine solide Grundlage, um Ihre ersten eigenen Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen. Die aktualisierte 3. Auflage behandelt jetzt auch Large Language Models wie z.B. ChatGPT und MLOps. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 19.90 € | Versand*: 0 €
  • SparkFun MicroMod Machine Learning Carrier Board
    SparkFun MicroMod Machine Learning Carrier Board

    SparkFun MicroMod Machine Learning Carrier Board

    Preis: 23.75 € | Versand*: 4.95 €
  • Raschka, Sebastian: Machine Learning Q and AI
    Raschka, Sebastian: Machine Learning Q and AI

    Machine Learning Q and AI , "An advanced exploration of machine learning and AI, with each chapter asking and answering a question from the field. Divided into five sections: deep learning and neural networks; computer vision; natural language processing; production and deployment; and predictive performance and model evaluation"-- , >

    Preis: 37.30 € | Versand*: 0 €
  • Adafruit BrainCraft HAT - Machine Learning mit Raspberry Pi 4
    Adafruit BrainCraft HAT - Machine Learning mit Raspberry Pi 4

    Adafruit BrainCraft HAT - Machine Learning mit Raspberry Pi 4

    Preis: 49.45 € | Versand*: 4.95 €
  • Welche Tools eignen sich am besten zur Datenanalyse und -visualisierung?

    Tools wie Tableau, Power BI und Qlik Sense sind beliebt für die Datenanalyse und -visualisierung aufgrund ihrer Benutzerfreundlichkeit und Funktionalität. Sie bieten eine Vielzahl von Funktionen zur Datenverarbeitung, -visualisierung und -präsentation. Die Auswahl des besten Tools hängt jedoch von den individuellen Anforderungen und Präferenzen ab.

  • Welche Einsatzmöglichkeiten bietet die Echtzeitverarbeitung in der Datenanalyse und -visualisierung?

    Die Echtzeitverarbeitung ermöglicht die Analyse und Visualisierung von Daten in Echtzeit, was schnelle Entscheidungen auf Basis aktueller Informationen ermöglicht. Sie eignet sich besonders für Anwendungen, die eine schnelle Reaktion auf sich ändernde Daten erfordern, wie z.B. in der Finanzbranche oder im Online-Marketing. Zudem können durch Echtzeitverarbeitung Trends und Muster sofort erkannt werden, um darauf basierend Maßnahmen zu ergreifen.

  • Welche Statistikprogramme bieten die besten Funktionen zur Datenanalyse und Visualisierung?

    Die besten Statistikprogramme für Datenanalyse und Visualisierung sind R, Python und SPSS. Sie bieten eine Vielzahl von Funktionen zur Datenanalyse, einschließlich statistischer Tests, Regression und Clustering. Darüber hinaus ermöglichen sie die Erstellung ansprechender Visualisierungen wie Diagramme, Grafiken und interaktive Dashboards.

  • Welche Tools eignen sich am besten zur effizienten Datenanalyse und Visualisierung?

    Für die effiziente Datenanalyse und Visualisierung eignen sich Tools wie Tableau, Power BI und Google Data Studio, die eine benutzerfreundliche Oberfläche und umfangreiche Funktionen bieten. Diese Tools ermöglichen es, große Datenmengen schnell zu analysieren, aussagekräftige Visualisierungen zu erstellen und Erkenntnisse leicht verständlich zu präsentieren. Durch die Integration von verschiedenen Datenquellen und die Automatisierung von Prozessen können Unternehmen ihre Datenanalyse optimieren und fundierte Entscheidungen treffen.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.